O(N) Stochastic Evaluation of Many-Body van der Waals Energies in Large Complex Systems

19 January 2022, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


We propose a new strategy to solve the Many-Body Dispersion (MBD) model by Tkatchenko, DiStasio Jr. and Ambrosetti. Our approach overcomes the original O(N**3) computational complexity that limits its applicability to large molecular systems within the context of O(N) Density Functional Theory (DFT). First, in order to generate the required frequency-dependent screened polarizabilities, we introduce an efficient solution to the Dyson-like self-consistent screening equations. The scheme reduces the number of variables and, coupled to a DIIS extrapolation, exhibits linear-scaling performances. Second, we apply a stochastic Lanczos trace estimator resolution to the equations evaluating the many-body interaction energy of coupled quantum harmonic oscillators. While scaling linearly, it also enables communication-free pleasingly-parallel implementations. As the resulting O(N) stochastic massively parallel MBD approach is found to exhibit minimal memory requirements, it opens up the possibility of computing accurate many-body van der Waals interactions of millions-atoms’ complex materials and solvated biosystems with computational times in the range of minutes.


quantum chemistry
many-body dispersion
van der Waals
Tkatchenko-Scheffler Many-Body Dispersion
Density Functional Theory

Supplementary materials

Supplementary Informations
Additionnal details.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.