Abstract
The production of hydrogen from water via solar water splitting is a potential method to overcome the intermittency of the Sun’s energy by storing it as a chemical fuel. Inorganic semiconductors
have been studied extensively as photocatalysts for overall water splitting, but polymer photocatalysts
are also receiving growing attention. So far, most studies involving organic polymers report hydrogen
production with sacrificial electron donors, which is unsuitable for large-scale hydrogen energy production. Here we show that a linear conjugated polymer photocatalyst can be used for overall water splitting
to produce stoichiometric amounts of H2 and O2. We studied a range of different metal co-catalysts in
conjunction with the linear polymer photocatalyst, the homopolymer of dibenzo[b,d]thiophene sulfone
(P10). Photocatalytic activity was observed for palladium/iridium oxide-loaded P10, while other co-catalysts resulted in materials that showed no activity for overall water splitting. The reaction conditions were
further optimized and the overall water splitting using the IrO2-loaded P10 was found to proceed steadily
for an extended period (>60 hours) after the system stabilized. These results demonstrate that conjugated polymers can act as single component photocatalytic systems for overall water splitting when
loaded with suitable co-catalysts, albeit currently with low activities. Significantly, though, organic polymers can be designed to absorb a large fraction of the visible spectrum, which can be challenging with
inorganic catalysts. Transient spectroscopy shows that the IrO2 co-catalyst plays an important role in the
generation of the charge separated state required for water splitting, with evidence for fast hole transfer
to the co-catalyst. This solid-state approach should be transferable to other polymer photocatalysts, allowing this field to move away from sacrificial hydrogen production towards overall water splitting.
Supplementary materials
Title
Supporting information
Description
Supporting information for manuscript
Actions