Next-generation biomonitoring of the early-life chemical exposome in neonatal and infant development

11 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Exposure to man-made and natural chemicals is a major, yet not sufficiently considered, environmental risk factor in the etiology of chronic diseases. Current human biomonitoring approaches typically measure a limited number of exposures rather than investigating complex mixtures. The latter would be fundamental and necessary for a holistic assessment of chemical exposure in exposome-wide association studies. In this work, an highly-sensitive liquid chromatography-tandem mass spectrometry approach was developed and thoroughly-validated. The assay enables the simultaneous and targeted assessment of more than 80 highly-diverse xenobiotics in the investigated body fluids of urine, serum/plasma, and breast milk; the detection limit for most toxicants are in the pg-ng/mL range. In the plasma of extremely-premature infants (gestational age <28 weeks, birth weight <1 kg) a total of 27 different xenobiotics are identified; including severe contamination with synthetic plasticizers, perfluorinated alkylated substances and parabens. In an independent sample set of breast milk that was longitudinally collected over the first 211 days post-partum, a total of 29 analytes is detected, including the first-ever identification of pyrrolizidine- and tropane alkaloids in this matrix. Based on the generated data, a preliminary estimation of daily toxicant intake via breast milk is conducted. In conclusion, our proof-of-principle experiments show significant early-life co-exposure to multiple toxicants, and demonstrate the method’s applicability in future large-scale exposomics-type cohort studies in vulnerable populations.

Keywords

chemical exposome
human biomonitoring
premature infants
contaminants
toxicants
exposomics
mass spectrometry

Supplementary materials

Title
Description
Actions
Title
Jamnik et al. 2022_SI_Part A
Description
Jamnik et al. 2022_SI_Part A (.docx file)
Actions
Title
Jamnik et al. 2022_SI_Part B
Description
Jamnik et al. 2022_SI_Part B (.xlsx file)
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.