Diastereoselective Indole-Dearomative Cope Rearrangements by Compounding Minor Driving Forces.

10 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Reported herein is the discovery of a diastereoselective indole-dearomative Cope rearrangement. A suite of minor driving forces (substrate destabilizing effects; product stabilizing effects) are what promote this otherwise unfavorable dearomatization reaction. These include the following that work in concert to overcome the penalty for dearomatization: (i.) steric congestion in the starting material, (ii.) alkylidene malononitrile and stilbene conjugation events in the product, and (iii.) an unexpected intramolecular p–p* stack on the product side of the equilibrium. The key substrates are rapidly assembled from alkylidenemalononitriles and indole-phenylmethanol derivatives resulting in many successful examples (high yields and diastereoselectivity). The products are structurally complex bearing vicinal stereocenters generated by the dearomative Cope rearrangement. They also contain a variety of functional groups for interconversion to complex architectures. On this line, also described herein are proof-of-concept strategies for achieving enantioselectivity and conversion of the dearomative products to valuable and functionalized small drug-like molecules.

Keywords

Cope Rearrangement
Dearomatization
Aromatic Cope Rearrangement

Supplementary materials

Title
Description
Actions
Title
Associated Content
Description
Supporting Information includes experimental procedures and characterization data (1H NMR, 13C NMR, HRMS, X-ray, HPLC traces).
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.