Single excitation energies obtained from the ensemble HOMO-LUMO gap: exact results and approximations

10 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In calculations based on density functional theory, the "HOMO-LUMO gap" (difference between the highest occupied and lowest unoccupied molecular orbital energies) is often used as a low-cost, ad hoc approximation for the lowest excitation energy. Here we show that a simple correction based on rigorous ensemble density functional theory makes the HOMO-LUMO gap exact, in principle, and significantly more accurate, in practice. The introduced perturbative ensemble density functional theory approach predicts different and useful values for singlet-singlet and singlet-triplet excitations, using semi-local and hybrid approximations. Excitation energies are of similar quality to time-dependent density functional theory, especially at high fractions of exact exchange. It therefore offers an easy-to-implement and low-cost route to robust prediction of molecular excitation energies.

Keywords

dft
edft
ensemble dft
homo-lumo

Supplementary materials

Title
Description
Actions
Title
Supplementary material for "Single excitation energies obtained from the ensemble HOMO-LUMO gap: exact results and approximations"
Description
Extra stuff
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.