Persistence Diagrams to Visualise Damage to Biological Networks

11 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

One of the critical tools of persistent homology is the persistence diagram. We demonstrate the applicability of a persistence diagram showing the existence of topological features (here rings in a 2D network) generated over time instead of space as a tool to analyse trajectories of biological networks. We show how the time persistence diagram is useful in order to identify critical phenomena such as rupturing and to visualise important features in 2D biological networks; they are particularly useful to highlight patterns of damage and to identify if particular patterns are significant or ephemeral. Persistence diagrams are also used to analyse repair phenomena, and we explore how the measured properties of a dynamical phenomenon change according to the sampling frequency. This shows that the persistence diagrams are robust and still provide useful information even for data of low temporal resolution. Finally, we combine persistence diagrams across many trajectories to show how the technique highlights the existence of sharp transitions at critical points in the rupturing process.

Keywords

Network Theory
Persistence Diagram
Collagen IV
Ring Statistics

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.