An 'Intermetallic' Molecular Nanomagnet with the Lanthanide Coordinated Only by Transition Metals

07 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The best performing molecular nanomagnets are currently designed by carefully arranging p-element donor atoms (usually carbon, nitrogen and/or oxygen) around the central magnetic ion. Inspired by the structure of the hardest intermetallic magnet SmCo5, we have demonstrated a nanomagnetic molecule where the central lanthanide (Ln) ion Er is coordinated solely by three transition metal (TM) ions in a perfectly trigonal planar fashion. The molecule [Er(ReCp2)3] (ErRe3) constitutes the first example of a molecular nanomagnet (MNM; or single molecule magnet SMM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions. Such interactions are believed to be crucial for quenching the quantum tunneling of magnetization which limits the application of Ln-SMMs as sub-nanometer magnetic memory units.

Keywords

lanthanide-transition metal direct bond
molecular nanomagnet
slow magnetic relaxation
molecular intermetallics
coordination chemistry
molecular magnetism

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.