Quantum Mechanical Study of Protonation of Oxygen Ligands in the Laccase Active Site Based on X-Ray Structures of Subatomic Resolution

07 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Laccases are enzymes catalyzing oxidation of a wide range of organic and inorganic substrates accompanied by molecular oxygen reduction to water. Previously studies of oxygen reduction by laccases have recently been reported. They were based on single-crystal serial X-ray crystallography with increasing absorption doses at subatomic resolution, As a result, coordinates of all non-hydrogen atoms of the active site have been determined with high precision for both oxidized and reduced states of the enzyme. Those data can be used to clarify the mechanism of molecular oxygen reduction by laccases. However, the X-ray data lack information about protonation states of the oxygen ligands involved. Applying quantum mechanical calculations, in the present work protonation of oxygen ligands in the active site of laccase was determined for both reduced and oxidized states of the enzyme (the stable states observed in experiments at reduction of molecular oxygen in laccase). The high precision of X-ray-determined atom coordinates allowed us to simplify preliminary calculations of molecular mechanics for models used in the quantum mechanical calculations.

Keywords

laccase
serial X-ray data
enzymatic oxygen reduction
reaction mechanism
quantum mechanical DFT calculations
oxygen ligands protonation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.