Multi-active Site Dynamics on a Molecular Cr/Co/Se Cluster Catalyst

05 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study provides detailed insights into the interconnected reactivity of the three catalytically active sites of an atomically precise nanocluster Cr3(py)3Co6Se8L6 (Cr3(py)3, L = Ph2PNTol–, Ph = phenyl, Tol = 4-tolyl). Catalytic and stoichiometric studies into tosyl azide activation and carbodiimide formation enabled the isolation and crystallographic characterization of key metal-nitrenoid catalytic intermediates, including the tris(nitrenoid) cluster Cr3(NTs)3, the catalytic resting state Cr3(NTs)3(CNtBu)3, and the mono(nitrenoid) cluster Cr3(NTs)(CNtBu)2. Nitrene transfer proceeds via a stepwise mechanism, with the three active sites engaging sequentially to produce carbodiimide. Comparative structural analysis and CNtBu bind-ing studies reveal that the chemical state of neighboring active sites regulates the affinity for substrates of an individual Cr-nitrenoid edge site, intertwining their reactivity through the inorganic support.

Keywords

multi-site catalysis
atomically precise nanocluster
nitrene transfer

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
General information, synthetic details and characterization of products, catalytic and stoichiometric azide activation and nitrene transfer reactivity, isocyanide binding constant determination, x-ray diffraction details.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.