Abstract
This study provides detailed insights into the interconnected reactivity of the three catalytically active sites of an atomically precise nanocluster Cr3(py)3Co6Se8L6 (Cr3(py)3, L = Ph2PNTol–, Ph = phenyl, Tol = 4-tolyl). Catalytic and stoichiometric studies into tosyl azide activation and carbodiimide formation enabled the isolation and crystallographic characterization of key metal-nitrenoid catalytic intermediates, including the tris(nitrenoid) cluster Cr3(NTs)3, the catalytic resting state Cr3(NTs)3(CNtBu)3, and the mono(nitrenoid) cluster Cr3(NTs)(CNtBu)2. Nitrene transfer proceeds via a stepwise mechanism, with the three active sites engaging sequentially to produce carbodiimide. Comparative structural analysis and CNtBu bind-ing studies reveal that the chemical state of neighboring active sites regulates the affinity for substrates of an individual Cr-nitrenoid edge site, intertwining their reactivity through the inorganic support.
Supplementary materials
Title
Supporting Information
Description
General information, synthetic details and characterization of products, catalytic and stoichiometric azide activation and nitrene transfer reactivity, isocyanide binding constant determination, x-ray diffraction details.
Actions