Vibrational Stark Fields in Carboxylic Acid Dimers

03 January 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Carboxylic acids form exceptionally stable dimers and have been used to model proton and double proton transfer processes. The stabilization energies of the carboxylic acid dimers are very weakly dependent on the nature of the substitution. However, the electric field experienced by the OH group of a particular carboxylic acid is dependent more on the nature of the substitution on the dimer partner. In general, the electric field was higher when the partner was substituted with electron-donating group and lower with electron-withdrawing substituent on the partner. The Stark tuning rate (∆μ) of the O–H stretching vibrations calculated at the MP2/aug-cc-pVDZ level was found to be weakly dependent on the nature of substitution on the carboxylic acid. The average Stark tuning rate of O–H stretching vibrations of a particular carboxylic acid when paired with other acids was 5.7 cm–1 (MV cm–1)–1, while the corresponding average Stark tuning rate of the partner acids due to a particular carboxylic acid was 21.9 cm–1 (MV cm–1)–1. The difference in the Stark tuning rate is attributed to the primary and secondary effects of substitution on the carboxylic acid. The average Stark tuning rate for the anharmonic O–D frequency shifts is about 40-50% higher than the corresponding harmonic O–D frequency shifts calculated at B3LYP/aug-cc-pVDZ level, much greater than the typical scaling factors used, indicating the strong anharmonicity of O–H/O–D oscillators in carboxylic acid dimers. Finally, the linear correlation observed between pKa and the electric field was used to estimate the pKa of fluoroformic acid to be around 0.9.

Keywords

Internal Electric Fields
Vibrational Stark Effect
Primary and Secondary Stark Tuning Rates

Supplementary materials

Title
Description
Actions
Title
Supporting Information for Vibrational Stark Fields in Carboxylic Acid Dimers
Description
Tables consisting of (i) stabilization energies, (ii) electric fields, (iii) O–H/O–D frequency shifts and (iv) fitting parameters; Figures showing plots of O–H/O–D frequency shifts, pKa against electric field; optimized coordinates of dimers
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.