Organic Chemistry

Synthesis of a Möbius carbon nanobelt

Authors

Abstract

New technologies for the creation of topological carbon nanostructures have significantly advanced synthetic organic chemistry and materials science. While simple molecular nanocarbons with a belt topology have been constructed recently, analogous carbon nanobelts with a twist, i.e., Möbius carbon nanobelts (MCNBs), have not yet been synthesized due to their high intrinsic strain. Herein, we report the synthesis, isolation, and characterization of a MCNB. Calculations of strain energies suggested that large MCNBs are synthetically accessible. Designing a macrocyclic precursor with an odd number of repeat units led to a successful rational synthetic route via Z-selective Wittig reactions and nickel-mediated intramolecular homocoupling reactions, which yielded (25,25)MCNB over 14 steps. NMR and theoretical calculations revealed that the twist moiety of the Möbius band moves quickly around the MCNB molecule in solution. The topological chirality originating from the Möbius structure was confirmed experimentally using chiral HPLC separation and CD spectroscopy.

Content

Thumbnail image of Mobius_20211231final.pdf

Supplementary material

Thumbnail image of SI_Mobius_20211231.pdf
Supplementary Information
Supplementary Information