Colorimetric Monitoring of a Chemical Reaction Using Cesium Lead Halide Assays

30 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Cesium lead halide (CsPbX3, X = F, Cl, Br, I ) nanomaterials have a number of novel optoelectronic and physical properties, both of which are tailorable based on halide type and concentration, such as halide composition-dependent photoluminescence and rapid halide exchange while maintaining crystal structure. In this work we take advantage of these properties and use colloidal CsPbI3 nanoparticles as a proxy and colorimetric sensor of a chemical reaction in real-time. A solvolysis reaction between 2-bromo-2-methylbutane and butanol was used as a model system. A product of reaction, a bromide ion, could be detected via halide exchange with CsPbI3, by way of a quantitative blue shift (Δλ) in photoluminescence. The kinetics of this shift was calibrated against a known Br - source, which allowed for conversion to apparent values solvation kinetics. The observed rate constants (k) and corresponding activation energies (Ea) measured via the CsPbI3 probe were consistent with literature values for the reaction, confirming the validity of the approach.


Cesium Lead Halide
Chemical Kinetics

Supplementary materials

Supporting Information
Supporting Tables & Figures


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.