In Situ Compensation Method for Precise Integral SQUID Magnetometry of Miniscule Biological, Chemical, and Pow-der Specimens Requiring the Use of Capsules

29 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Steadily growing interest in magnetic characterization of organic compounds aiming at therapeutic purposes, or of other irregular-shaped specimens calls for refinements of experimental methodology to satisfy experimental challenges. Encapsulation in capsules remains the method of choice, but its applicability in precise magnetometry is limited. This is particularly true for minute specimens in single mg range since they are outweighed by the capsules and due to large alignment errors. We present here a complete new experimental methodology which permits 30-fold in situ reduction of the signal of capsules. In practical terms it means that the standard 30 mg capsule is seen by the magnetometer as about 1 mg object, effectively opening the window for precise magnetometry of single mg specimens. The method is shown to work down to 1.8 K and in the whole range of the magnetic fields. The method is demonstrated and validated using the reciprocal space option of MPMS-SQUID magnetometers, however it can be easily incorporated in any magnetometer which can accommodate straw sample holders (i.e. the VSM-SQUID). Importantly, the improved sensitivity is accomplished relying only on the standard accessories and data reduction method provided by the SQUID manufacturer, eliminating needs for an elaborate raw data manipulations.

Keywords

SQUID
Integral magnetometry
In situ compensation
Gelatine capsules
Capsules mounting
Amorphous specimens
Straw sample holder
Powder samples
SnTe
Turmeric

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.