Benzene and NOx photocatalytic assisted removal using indoor lighting conditions

27 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Modern life-style is creating an indoor generation: human beings spend approximately 90% of their time indoors, almost 70% of which is at home – this trend is now exacerbated by the lockdowns/restrictions imposed due to the COVID-19 pandemic. That large amount of time spent indoors may have negative consequences on health and well-being. Indeed, poor indoor air quality is linked to a condition known as sick building syndrome. Therefore, breathing the freshest air possible it is of outmost importance. Still, due to reduced ventilation rates, indoor air quality can be considerably worse than outdoor. HVAC, air filtration systems and a well-ventilated space are a partial answer. However, these approaches involve only a physical removal. Photocatalytic mineralisation of pollutants into non-hazardous, or at least less dangerous compounds, is a more viable solution for their removal. Titanium dioxide, the archetype photocatalytic material, needs UVA light to be “activated”. However, modern household light emitting diode lamps irradiate only in the visible region of the solar spectrum. In this short-communication, we show that the surface of titanium dioxide nanoparticles modified with copper oxide(s) and graphene shows promise as a viable way to remove gaseous pollutants (benzene and NOx) by using a common light emitting diode bulb, mimicking real indoor lighting conditions. Titanium dioxide, modified with 1 mol% CuxO and 1 wt% graphene, proved to have a stable photocatalytic degradation rate, three times higher than that of unmodified titania. Materials produced in this research work are thus strong candidates for offering a safer indoor environment.

Keywords

Photocatalytic VOC and NOx removal
Indoor lighting
Indoor air quality
Smart-materials
Graphene decorated titania

Supplementary materials

Title
Description
Actions
Title
Experimental side of the paper
Description
This is where we describe how the specimens were prepared, and characterised. There's also some extra experimental stuff that had no room in the main text.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.