Towards a Quantitative Cartography of the Grain Boundary Energy Landscape: Paths and Correlations

24 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We apply a newly developed Voronoi fundamental zone (VFZ) framework to gain insights about grain boundary (GB) structure-property relationships in the five degree-of-freedom (5DOF) space of cubic GBs. We analyze the shape and size of a 5DOF fundamental zone (FZ), molecular statics energy uncertainty, property similarity of GBs that are crystallographically \close" (i.e. correlations), and energy pathways through 5DOF space. Considered together, these insights are important for managing tradeoffs between accuracy, complexity, and design considerations for electron backscatter diffraction/serial sectioning, high-energy diffraction microscopy, molecular statics, and density-functional theory. In terms of the shape and size of a 5DOF FZ, we discover that a FZ is smaller than expected at only ∼65° in the largest principal component. Thus, a 10° difference between two GBs, which may have previously been considered small, is actually quite large. We represent a GB by five transformed Cartesian coordinates equipped with a Euclidean distance metric. Using this representation, we find that the FZ has a low aspect-ratio shape (i.e. width, length, height, etc. are similar) which is important for 5DOF numerical differentiation. Semivariogram and numerical optimization methods reveal that grain boundary energy (GBE) in Ni and Fe are globally correlated within ∼6° to 8° in the grain boundary octonion (GBO) sense (multiply by 2 to convert to misorientation angle). For local correlation lengths of high-symmetry GBs of interest, we notice significant variation relative to global correlation lengths and an inverse relationship with the Brandon criterion. We suggest that property data with no more than ± ∼3 % error and point sets with GBs that are no more than ∼3−4° apart should be used and then paired with high-fidelity interpolation strategies. Finally, in terms of dynamic material behavior, geodesic paths through 5DOF space for Ni suggest that, under appropriate conditions, a certain low-energy Σ7 GB may transform into the frequently observed Σ3 coherent-twin GB which may be interesting to verify by experiment or simulation.

Keywords

grain boundary
grain boundary energy
five degree-of-freedom
5DOF
structure-property model
machine learning
octonion
interp5DOF
Voronoi Fundamental Zone
grain boundary octonion
grain boundary correlation length
nickel
iron
coincident site lattice
Brandon criterion
grain boundary distance
5DOF path

Supplementary materials

Title
Description
Actions
Title
Towards a Quantitative Cartography of the Grain Boundary Energy Landscape: Paths and Correlations: Supplementary Information
Description
Summary of VFZ methods, semivariograms for estimating global and local correlation lengths, Fe input dataset characteristics, gridded sampling for numerical differentiation, and GBs used for path visualization.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.