LanM Peptides – Unravelling the Binding Properties of the EF-Hand Loop Sequences Stripped from the Structural Corset

24 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Since the discovery of the biological relevance of lanthanides (Lns) for methylotrophic bacteria in the last decade, the field has seen a steady rise in discoveries of bacteria using Lns. The major role of lanthanides here is in the active sites of enzymes: methanol dehydrogenases. Additionally, lanthanide binding proteins have also been identified. One such protein is lanmodulin (LanM) and, with a remarkable selectivity for Lns over Ca(II) and affinities in the picomolar range, it makes an attractive target to address challenges in lanthanide separation. Why LanM has such a high selectivity is currently not entirely understood, both the specific amino acid sequences of the EF-hand loops, together with cooperativity effects have been suggested. Consequently, we decided to remove the effect of cooperativity by focusing on the amino acid level. Thus, we synthesized all four 12-amino acid EF-Hand loop peptides of LanM using solid phase peptide synthesis and investigated their affinity for Lns (Eu(III), Tb(III)), the actinide Cm(III) and Ca(II). Using isothermal titration calorimetry and time resolved laser fluorescence spectroscopy combined with parallel factor analysis, we show that in the absence of cooperativity the short EF-Hand loop peptides have all similar affinities for lanthanides and that these are all in the micromolar range. Furthermore, calcium was shown not to bind to the peptides which was verified with circular dichroism spectroscopy. This technique also revealed that the peptides undergo a change to a more ordered state when lanthanides are added. These experimental observations were further supported by molecular dynamics simulations. Lastly, we put Eu(III) and Cm(III) in direct competition using TRLFS. Remarkably, a slightly higher affinity for the actinide, as was also observed for LanM, was found. Our results demonstrate that the picomolar affinities in LanM are largely an effect of pre-structuring in the full protein and therefore reduction of flexibility in combination with cooperative effects, and that all EF-Hand loops possess similar affinities when detached from the protein backbone, albeit still retaining the high selectivity for lanthanides and actinides over calcium.

Keywords

Lanmodulin
metal-binding peptides
lanthanide-binding peptides
actinide-binding peptides
EF-Hand loop-based peptides

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental Details and Additional Figures for Peptide Synthesis and Purification, Binding Studies, CD Spectroscopy (CD), Isothermal titration calorimetry (ITC) , Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS) and Molecular dynamics (MD) simulations.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.