An Easily Synthesized Covalent Nanocage that Hosts Fullerenes in Multiple Charge States and Selectively Binds C70

23 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Discrete nanocages provide a way to solubilize, separate, and tune the properties of molecular guests, including fullerenes and other aromatics. However, few such nanocages can be synthesized efficiently from inexpensive starting materials, limiting their practical utility. To address this limitation, we developed a new pyridinium-linked cofacial porphyrin nanocage (Cage4+) that can be prepared efficiently on a gram scale. NMR studies in CD3CN reveal that Cage4+ binds C60 and C70 with association constants >108 M-1 and complete selectivity for extracting C70 from mixtures of both fullerenes. The solubility of Cage4+ in polar solvents enabled electrochemical characterization of the host-guest complexes C60@Cage4+ and C70@Cage4+, finding that the redox properties of the encapsulated fullerenes are minimally affected despite the positive charge of the host. Complexes of the −1 and −2 charge states of the fullerenes bound in Cage4+ were subsequently characterized by UV-vis-NIR and NMR spectroscopies. The relatively easy preparation of Cage4+ and its ability to bind fullerenes without substantially affecting their redox properties suggests that C60@Cage4+ and C70@Cage4+ may be directly useful as solubilized fullerene derivatives.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Synthetic and experimental details, NMR spectra, ESI-HRMS data, cyclic voltammograms, UV-vis-NIR spectra, computational details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.