Abstract
Amorphous, single site, silica-supported main group metal catalysts have recently been found to promote olefin oligomerization with high activity at moderate temperatures and pressures (~250°C and 1 atm). Herein, we explore the molecular-level relationship between active site structures and the associated oligomerization mechanisms by developing amorphous, silica-supported Ga3+ models from periodic, first-principles calculations. Representative Ga3+ sites, including three- and four-coordinated geometries, are tested for multiple ethylene oligomerization pathways. We show that the three-coordinated Ga3+ site promotes oligomerization through a facile initiation process that generates a Ga-alkyl intermediate, followed by a Ga-alkyl-centered Cossee-Arlman mechanism. The strained geometry of a three-coordinated site enables a favorable free energy landscape with a kinetically accessible ethylene insertion transition state (1.7 eV) and a previously unreported β-hydride transfer step (1.0 eV) to terminate further C-C bond formation. This result, in turn, suggests that Ga3+ does not favor polymerization chemistry, while microkinetic modeling confirms that ethylene insertion is the rate-determining step. The study demonstrates promising flexibility of main group ions for hydrocarbon transformations and, more generally, highlights the importance of the local geometry of metal ions on amorphous oxides in determining catalytic properties.
Supplementary materials
Title
First Principles Analysis of Ethylene Oligomerization on Single-site Ga Catalysts Supported on Amorphous Silica
Description
This material contains detailed free energy information of the analyzed reaction mechanisms, kinetic calculation details, entropy calculations, Ga site schematics, and Arrhenius plots.
Actions