OS100: A Benchmark Set of 100 Digitized UV-Visible Spectra and Derived Experimental Oscillator Strengths

23 December 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Excited-state quantum chemical calculations typically report excitation energies and oscillator strengths, ƒ, for each electronic transition. On the other hand, UV-visible spectrophotometric experiments report energy-dependent molar extinction/attenuation coefficients, ε(v), that determine the absorption band line shapes. ε(v) and ƒ are related, but this relation is complicated by various broadening and solvation effects. We fit and integrated experimental UV-visible spectra to obtain ƒexp values for absorption bands and estimated the uncertainty in the fitting. We derived 164 ƒexp values from 100 organic molecules ranging in size from 6-34 atoms. The corresponding computed oscillator strengths (ƒcomp) were obtained with time-dependent density functional theory and a polarizable continuum solvent model. By expressing experimental and computed absorption strengths using a common quantity, we directly compared ƒcomp and ƒexp. While ƒcomp and ƒexp are well correlated (linear regression R2=0. 921), ƒcomp in most cases significantly overestimates ƒexp (regression slope=1.34). The agreement between absolute ƒcomp and ƒexp values was substantially improved by accounting for a solvent refractive index factor, as suggested in some derivations in the literature. The 100 digitized UV-visible spectra are included as plain text files in the supporting information to aid in benchmarking computational or machine-learning approaches that aim to simulate realistic UV-visible absorption spectra.

Keywords

UV-visible spectroscopy
Oscillator strength
Transition dipole moment
Extinction coefficient
Molar absorptivity
Benchmark
Absorption strength
Molar attenuation coefficient
TD-DFT
Polarizable continuum model

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.