Measuring anion binding at biomembrane interfaces

21 December 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Understanding non-covalent molecular recognition events at biomembrane interfaces is important in biological, medicinal, and materials chemistry research.1 Despite the crucial regulatory roles of anion binding/transport processes at biomembranes, no information is available regarding how strongly anions can bind to naturally occurring or synthetic receptors in lipid bilayer environments compared to their well-established behaviour in solutions.2 To bridge this knowledge gap, we synthesised a flat macrocycle that possesses a record aqueous SO42– affinity among neutral receptors and exploited its unique fluorescence response at interfaces. We show that the determinants of anion binding are extraordinarily different in organic solvents and in lipid bilayers. The high charge density of dihydrogen phosphate and chloride ions prevails in DMSO, however in lipids they fail to bind the macrocycle. Perchlorate and iodide hardly bind in DMSO but show significant affinities for the macrocycle in lipids. Our results demonstrate a surprisingly great advantage of large, charge-diffuse anions to bind to a lipid-embedded synthetic receptor mainly attributed to their higher polarisabilities and deeper penetration into the bilayer, beyond the common knowledge of dehydration energy-governed selectivity. The elucidation of these principles enhances our understanding of biological anion recognition functions in membranes and guides the design of ionophores and molecular machines operating at biomembrane interfaces.

Keywords

anion transport
supramolecular chemistry
lipids
vesicles
stability constant

Supplementary materials

Title
Description
Actions
Title
Electronic supplementary information
Description
Electronic supplementary information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.