A Bond Bundle Case Study of Diels-Alder Catalysis Using Oriented Electric Fields

21 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Bond bundles are chemical bonding regions, analogous to Bader atoms, uniquely defined according to the topology of the gradient bundle condensed charge density, itself obtained by a process of infinitesimal partitioning of the three-dimensional charge density into differential zero-flux surface bounded regions. Here we use bond bundle analysis to investigate the response of the charge density to an oriented electric field in general, and the catalytic effect of such a field on Diels-Alder reactions in particular, which in this case is found to catalyze by allowing the transition state valance bond bundle configuration to be achieved earlier along the reaction pathway. Using precise numerical values, we arrive at the conclusion that chemical reactions and electric field catalysis can be understood in terms of intra-atomic charge density redistribution, i.e., that charge shifts within more so than between atoms account for the making and breaking of bonds.

Keywords

bond bundles
qtaim
gradient bundle analysis
gradient bundle
Diels-alder
electric field catalysis
electron density analysis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.