Exploration and Validation of Force Field Design Protocols through QM-to-MM Mapping

21 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The scale of the parameter optimisation problem in traditional molecular mechanics force field construction means that design of a new force field is a long process, and sub-optimal choices made in the early stages can persist for many generations of the force field. We hypothesise that careful use of quantum mechanics to inform molecular mechanics parameter derivation (QM-to-MM mapping) should be used to significantly reduce the number of parameters that require fitting to experiment and increase the pace of force field development. Here, we design a collection of 15 new protocols for small, organic molecule force field design, and test their accuracy against experimental liquid properties. Our best performing model has only seven fitting parameters, yet achieves mean unsigned errors of just 0.031 g/cm3 and 0.69 kcal/mol in liquid densities and heats of vaporisation, compared to experiment. The software required to derive the designed force fields is freely available at https://github.com/qubekit/QUBEKit.

Keywords

Quantum mechanics
Force field
Software
QUBEKit
Molecular mechanics
ForceBalance
Atoms-in-molecule
Lennard-Jones
Virtual site

Supplementary materials

Title
Description
Actions
Title
Supporting Information for: Exploration and Validation of Force Field Design Protocols through QM-to-MM Mapping
Description
Supporting methods, theory and data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.