A ruthenium-based catalyst on carbon electrodes for electrochemical water splitting

21 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in our transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation and two simple methods for preparing anodes by attaching this catalyst onto multi-walled carbon nanotubes. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscope techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.

Keywords

water splitting
electrocatalyst
ruthenium
water oxidation
heterogeneous catalyst

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Support information listing all relevant experimental data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.