AutoDesigner, a De Novo Design Algorithm for Rapidly Exploring Large Chemical Space for Lead Optimization: Application to the Design and Synthesis of D-Amino Acid Oxidase Inhibitors

20 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The lead optimization stage of a drug discovery program generally involves the design, synthesis and assaying of hundreds to thousands of compounds. The design phase is usually carried out via traditional medicinal chemistry approaches and/or structure based drug design (SBDD) when suitable structural information is available. Two of the major limitations of this approach are (1) difficulty in rapidly designing potent molecules that adhere to myriad project criteria, or the multiparameter optimization (MPO) problem, and (2) the relatively small number of molecules explored compared to the vast size of chemical space. To address these limitations we have developed AutoDesigner, a de novo design algorithm. AutoDesigner employs a cloud-native, multi-stage search algorithm to carry out successive rounds of chemical space exploration and filtering. Millions to billions of virtual molecules are explored and optimized while adhering to a customizable set of project criteria such as physicochemical properties and potency. Additionally, the algorithm only requires a single ligand with measurable affinity and a putative binding model as a starting point, making it amenable to the early stages of a SBDD project where limited data is available. To assess the effectiveness of AutoDesigner, we applied it to the design of novel inhibitors of D-amino acid oxidase (DAO), a target for the treatment of schizophrenia. AutoDesigner was able to generate and efficiently explore over 1 billion molecules to successfully address a variety of project goals. The compounds generated by AutoDesigner that were synthesized and assayed (1) simultaneously met not only physicochemical criteria, clearance and central nervous system (CNS) penetration (Kp,uu) cutoffs, but also potency thresholds; (2) fully utilize structural data to discover and explore novel interactions and a previously unexplored subpocket in the DAO active site. The reported data demonstrate that AutoDesigner can play a key role in accelerating the discovery of novel, potent chemical matter within the constraints of a given drug discovery lead optimization campaign.

Keywords

AutoDesigner
SBDD
FEP
FEP+
DAO
DAAO
NMDA
Schizophrenia
Drug Discovery
Enumeration
De Novo

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.