α-Helix in Cystathionine β-Synthase Enzyme Acts as Electron Reservoir

17 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The modulation of electron density at the Pyridoxal 5-phosphate (PLP) catalytic center, due to charge transfer across the α-Helix-PLP interface, is the determining factor for the enzymatic activities in the human Cystathionine β-Synthase (hCBS) enzyme. Applying density-based first-principle calculations in conjunction with the real space density analysis, we investigated the charge density delocalization across the entire Heme-α-Helix-PLP electron communication channels. The hydrogen bonds at the interfaces, i.e. Heme-α-Helix and α-Helix-PLP interfaces, are found to play the pivotal role in bi-directional electron transfer towards the α-Helix. Moreover, the internal hydrogen bonds of α-Helix that are crucial for its secondary structure also actively participate in the electron redistribution through the structured hydrogen bond network. α-Helix is found to accumulate the electron density at the ground state from both the cofactors and behaves as an electron reservoir for catalytic reaction at the electrophilic center of PLP.

Keywords

CBS enzyme
Electron transfer through hydrogen bonds
Modulation of electrophilicity
Bidirectional electron accumulation in α-Helix

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.