Abstract
Triplet sensitization of rubrene by bulk lead halide perovskites has recently resulted in efficient infrared-to-visible photon upconversion via triplet-triplet annihilation. Notably, this process occurrs under solar relavant fluxes, potentially paving the way toward integration with photovoltaic devices. In order to further improve the upconversion efficiency, the fundamental photophysical pathways at the perovskite/rubrene interface must be clearly understood to maximize charge extraction. Here, we utilize ultrafast transient absorption spectroscopy to elucidate the processes underlying the triplet generation at the perovskite/rubrene interface. Based on the bleach and photoinduced absorption features of the perovskite and perovskite/rubrene devices obtained at multiple pump wavelengths and fluences, along with their resultant kinetics, our results do not support charge transfer states or long-lived trap states as the underlying mechanism. Instead, the data points towards a triplet sensitization mechanism based on rapid extraction of thermally excited carriers on the picosecond timescale.
Supplementary materials
Title
Supporting Information
Description
Details of experimental methods, carrier temperature calculations and additional TA data.
Actions