Blatter Radicals as Bipolar Materials for Symmetric Redox-Flow Batteries

15 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Redox-active organic molecules are promising charge-storage materials for redox-flow batteries (RFBs), but material crossover between posolyte/negolyte and chemical degradation are limiting factors in the performance of all-organic RFBs. We demonstrate that the bipolar electrochemistry of 1,2,4-benzotriazin-4-yl (Blatter) radicals allows construction of batteries with symmetric electrolyte composition. Cyclic voltammetry shows that these radicals retain reversible bipolar electrochemistry also in the presence of water. The redox potentials of derivatives with a C(3)-CF3 substituent are least affected by water and, moreover, these compounds show >90% capacity retention after charge/discharge cycling in a static H-cell for seven days (ca. 100 cycles). Testing these materials in a flow regime at 0.1 M concentration of active material confirmed the high cycling stability under conditions relevant for RFB operation, and demonstrated that polarity inversion in a symmetric flow battery may be used to rebalance the cell. Chemical synthesis provides insight in the nature of the charged species by spectroscopy and (for the oxidized state) X-ray crystallography. The stability of these compounds in all three states of charge highlights the potential for application in symmetric organic redox-flow batteries.

Keywords

redox flow battery
radicals
redox chemistry
energy storage

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental procedures and spectral data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.