Explore High Thermal Conductivity Amorphous Polymers using Reinforcement Learning

15 December 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Developing amorphous polymers with desirable thermal conductivity has significant implications, as they are ubiquitous in applications where thermal transport is critical. Conventional Edisonian approaches are slow and without guarantee of success in material development. In this work, using a reinforcement learning scheme, we design polymers with thermal conductivity above 0.4 W/m- K. We leverage a machine learning model trained against 469 thermal conductivity data calculated from high-throughput molecular dynamics (MD) simulations as the surrogate for thermal conductivity prediction, and we use a recurrent neural network trained with around one million virtual polymer structures as a polymer generator. For all newly generated polymers with thermal conductivity > 0.400 W/m-K, we have evaluated their synthesizability by calculating the synthesis accessibility score and validated the thermal conductivity of selected polymers using MD simulations. The best thermally conductive polymer designed has a MD-calculated thermal conductivity of 0.693 W/m-K, which is also estimated to be easily synthesizable. Our demonstrated inverse design scheme based on reinforcement learning may advance polymer development with target properties, and the scheme can also be generalized to other materials development tasks for different applications.


Reinforcement learning
amorphous polymers
thermal conductivity


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.