Abstract
The requirements for organic semiconductor materials and new methods for their synthesis at low temperature have risen over the last decades, especially due to concerns of sustainability. Herein, we present an innovative method for the synthesis of a so-called “red carbon” thin film, being composed of carbon and oxygen, only. This material was already described by Kappe and Ziegler at the beginning of the 20th century, but now can complement the current research on covalent organic semiconductor materials. The herein described red carbon can be homogeneous deposited on glass substrates as thin ilms which reveal a highly ordered structure. The films are highly reactive towards amines and were employed as amine vapor sensors for a scope of analogous amines. The gas-to-solid phase reaction causes a significant change of the films optical properties in all cases, blue-shifting the bandgap and the photoluminescence spectra from the red to the near UV range. The irreversible chemical reaction between the thin film and the vapor was also exploited for the preparation of nitrogen containing thin carbon films. We expect the herein presented red carbon material is of interest not only for sensing applications, but also in optoelectronics.