Biocatalytic asymmetric construction of secondary and tertiary fluorides from β-fluoro-α-ketoacids

14 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Fluorine is a critical element for the design of bioactive compounds, but its incorporation with high regio- and stereoselectivity using environmentally friendly reagents and catalysts remains an area of development. Stereogenic tertiary fluorides pose a particular synthetic challenge and are thus present in only a few approved pharmaceuticals such as fluticasone, solithromycin, and sofosbuvir. The aldol reaction of fluorinated donors provides an atom-economical approach to asymmetric C-F motifs via C-C bond formation. Here we report that the type II pyruvate aldolase HpcH and engineered mutants thereof are biocatalysts for carboligation of ß-fluoro-α-ketoacids (including fluoropyruvate, ß-fluoro-α-ketobutyrate, and ß-fluoro-α-ketovalerate) with many diverse aldehydes. The reaction proceeds with kinetic resolution in the case of racemic donors. The reactivity of HpcH towards these new donors, which are non-native in both steric and electronic properties, grants access to enantiopure fragments with secondary or tertiary fluoride stereocenters. In addition to representing the first asymmetric synthesis of tertiary fluorides via biocatalytic carboligation, the afforded products could improve the diversity of fluorinated building blocks and enable the synthesis of fluorinated drug analogs.


asymmetric synthesis
aldol reaction

Supplementary materials

Supplementary Information: Biocatalytic asymmetric construction of secondary and tertiary fluorides from β-fluoro-α-ketoacids
Contains supplementary figures, experimental procedures, and compound characterization data.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.