The Role of an Inert Electrode Support in Plasmonic Electrocatalysis

14 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Plasmonic nanostructures loaded onto catalytically inert conductive support materials are believed to be advantageous for maximizing photocatalytic effects in photoelectrochemical systems due to the increased efficiency of Schottky barrier-free architectures in collecting hot charge carriers. However, the systematic mechanistic investigation and description of the inert electrode support contribution to plasmonic electrocatalysis is missing. Herein, we systematically investigated the effect of the supporting electrode material on the observed photocatalytic enhancement by comparing photoelectrocatalytic properties of AuNPs supported on highly oriented pyrolytic graphite (HOPG) and on indium tin oxide (ITO) electrodes using electrocatalytic benzyl alcohol (BnOH) oxidation as a model system. Upon illumination, only ~(3 ± 1)% enhancement in catalytic current was recorded on the AuNP/ITO electrodes in contrast to ~(42 ± 6)% enhancement on AuNP/HOPG electrodes. Our results showed that the local heating due to light absorption by the electrode material itself independent of localized surface plasmon effects is the primary source of the observed significant photo-induced enhancement on the HOPG electrodes in comparison to the ITO electrodes. Moreover, we demonstrated that an increased interfacial charge transfer at elevated temperatures, and not faster substrate diffusion is the main source of the enhancement. This work highlights the importance of systematic evaluation of contributions of all parts, even if they are catalytically inert, to the light-induced facilitation of catalytic reactions in plasmonic systems.

Keywords

Plasmonic electrocatalysis
benzyl alcohol oxidation
graphite electrode support
gold nanoparticles
charge transfer kinetics

Supplementary materials

Title
Description
Actions
Title
ESI_The Role of an Inert Electrode Support in Plasmonic Electrocatalysis
Description
Electrochemical setup and data to support the main text.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.