Hierarchical living assembly: fabrication and visualization of multiblock microstructures

14 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nature possesses a powerful ability to assemble multiple complex structures to fabricate hierarchical biological structures in a living-assembled way. However, it is still a huge challenge for artificial systems to fabricate and characterize hierarchical living assemblies with well-defined and controllable but complex structures. In this work, we proposed a new concept for the fabrication of multiblock fluorescent microcolumns, which relies on the cooperation between the controllable host–guest complexation based on cucurbit[8]uril (CB[8]) and the living assembly of nanotubular supramolecular polymers composed of CB[8] and NaBr in aqueous solution. By using the complexation of CB[8] with different guest numbers of luminogens with aggregation-induced emission (AIEgens) characteristics, and the difference in affinity between CB[8] and different types of AIEgens, the concentration-controlled and self-sorting-controlled sequential living assembly are realized, respectively. Correspondingly, multiblock fluorescent microcolumns with different fluorescence emission are fabricated, and the molecular structure of each fluorescent block is analyzed by single crystal X-ray diffraction measurement. In addition, the living assembly of multiblock fluorescent microcolumns is visualized, understood, and regulated with the aid of AIEgens. The method developed here is expected to be extended to more guest molecules of CB[8] and also provides a referential crystallization method for CB[8]-based complexes.


living assembly
aggregation-induced emission
multiblock microcolumn

Supplementary materials

Supporting Information
Supporting Information contains supporting figures, supporting tables, materials and methods, and so on.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.