Finding the Sweet Spot of Photocatalysis – A Case Study using Bipyridine-based CTFs

13 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Covalent Triazine Frameworks (CTFs) are a class of Porous Organic Polymers which attracts continuously growing interest because of their outstanding chemical and physical properties. However, the control of extended porous organic frameworks’ structures at the molecular scale for a precise adjustment of their properties has hardly been achieved so far. Here, we present a series of bipyridine-based CTFs synthesized through polycondensation, in which the sequence of specific building blocks is well controlled. The reported synthetic strategy allows to tailor the physicochemical features of the CTF materials, including nitrogen content, apparent specific surface area and opto-electronic properties. Based on a comprehensive analytic investigation, we demonstrate a direct correlation of the CTF bipyridine content with the material features such as specific surface area, bandgap, charge separation and surface wettability with water. The entirety of those parameters dictates the catalytic activity as demonstrated for the photocatalytic hydrogen evolution reaction (HER). The material with the necessary balance between opto-electronic properties and highest hydrophilicity enables HER production rates of up to 7.2 mmol·h-1·g-1 under visible light irradiation and in the presence of a platinum co-catalyst.

Keywords

Covalent Triazine Framework
photocatalysis
hydrogen evolution reaction
molecular control
bipyridine

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Detailed experimental procedures, materials and instruments used as well as addition material characterization and literature overview are provided in the Supporting Information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.