Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient

13 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Following the formulation of cavity quantum electrodynamical time-dependent density functional theory (cQED-TDDFT) models [Flick et al., ACS Photonics 6, 2757-2778 (2019); Yang et al., J. Chem. Phys. 155, 064107 (2021)], here we report the derivation and implementation of the analytic energy gradient for the polaritonic states of a single photochrome within the cQED-TDDFT models. Such gradient evaluation is also applicable to a complex of explicitly-specified photochromes, or, with proper scaling, a set of parallel-oriented, identical-geometry, non-interacting molecules in the microcavity.

Keywords

TDDFT
QED
Polaritons

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.