Hydrogenolysis cleavage of Csp2-Csp3 bond over a metal-free NbOPO4 catalyst

14 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ru/NbOx catalysts, which combine the merits of facile hydrogen activation, strong binding to benzene ring and the presence of Brønsted acid sites, were well investigated toward Csp2-Csp3 bond cleavage. Herein, we unlock the ability of bare NbOx catalyst in the dissociation and activation of hydrogen molecule and further hydrogenolysis of the Csp2-Csp3 model compounds including polystyrene (PS). In-situ Drift and density functional theory (DFT) calculations reveal that H2 can be dissociated and surface hydride species can be produced over Nb2O5 through heterolytic and homolytic cleavages of H2. We also find that the existence of surface oxygen vacancies plays a key role in stabilizing hydride species. Further, the NbOPO4 catalyst not only allows the conversion of phenylcyclohexane to monocyclic compounds by cleaving Csp2-Csp3 bond, but also enables the conversion of PS to arenes with a high selectivity. This study provides and proves for the first time, the unique ability of metal oxides (phosphates) in the hydrogenolysis of compounds and plastics containing Csp2-Csp3 bonds.

Keywords

C-C bond cleavage
metal-free hydrogenolysis
Nb2O5

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
Methods, additional figures and tables
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.