Abstract
Insulin, a peptide hormone, is susceptible to amyloid formation upon exposure to aberrant physiological conditions, result-ing in a loss of its bioactivity. For mitigating insulin aggregation, we report a molecule called PAD-S, which completely inhibit-ed insulin fibril formation, and preserved insulin in its soluble form. Circular Dichroism spectroscopy showed that PAD-S was able to maintain the native structure of insulin, thus acting as a chemical chaperone. Seeded aggregation kinetics suggest that PAD-S inhibited primary nucleation events during aggregation. This is consistent with molecular docking results which suggest that PAD-S binds strongly to native insulin monomers/dimers. Through a competitive binding experiment with ‘LVEALYL’ peptide, we conclude that PAD-S likely binds to the amyloid prone B11-B17 residues of insulin thereby prevent-ing its aggregation. PAD-S was also effective in disaggregating preformed insulin fibrils to non-toxic species. PAD-S treated insulin was functional as indicated by its ability to phosphorylate Akt. PAD-S was also highly effective in preventing the ag-gregation of insulin biosimilars. The low cellular cytotoxicity of PAD-S, and amelioration of aggregation-induced toxicity by PAD-S treated insulin further highlights its potential as an effective chemical chaperone.