Gently Does It!: In Situ Preparation of Alkali Metal - Solid Electrolyte Interfaces for Photoelectron Spectroscopy

10 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The key charge transfer processes in energy storage devices occur at the electrode-electrolyte interface, which is typically buried making it challenging to access the interfacial chemistry. In the case of Li-ion batteries, metallic Li electrodes hold promise for increasing energy and power densities, and when used in conjunction with solid electrolytes (SEs) adverse safety implications associated with dendrite formation in organic liquid electrolytes can potentially be overcome. To better understand the stability of SEs when in contact with alkali metals and the reactions that occur, here we consider the deposition of thin (~10 nm) alkali metal films onto SE surfaces, that are thin enough that X-ray photoelectron spectroscopy can probe the buried electrode-electrolyte interface. We highlight the importance of in situ alkali metal deposition, by assessing the contaminant species that are present after glovebox handling and the use of ‘inert’ transfer devices. Consequently, we compare and contrast three available methods for in situ alkali-metal deposition; Li sputter deposition, Li evaporation, and Li plating induced by e− flood-gun irradiation. Studies on both a sulphide SE (Li6PS5Cl), and a single-layer graphene probe surface reveal that the more energetic Li deposition methods, such as sputtering, can induce surface damage and interfacial mixing that is not seen with thermal evaporation. This indicates that appropriate selection of the Li deposition method for in situ studies is required to observe representative behaviour, and the results of previous studies involving energetic deposition may warrant further evaluation.

Keywords

In Situ
Lithium metal deposition
sulphide solid electrolyte
surface reactivity
surface contamination
X-ray photoelectron spectroscopy
Raman
single-layer graphene damage

Supplementary materials

Title
Description
Actions
Title
Gently Does It!: In Situ Preparation of Alkali Metal - Solid Electrolyte Interfaces for Photoelectron Spectroscopy – Supporting Information
Description
Supporting information showing supporting SOXPES and HAXPES data for Li deposited on Argyrodite solid electrolyte, the comparison of in situ Li metal sputtering and argon ion bombardment, and surface contamination resulting from use of inert transfer devices.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.