New Modular Organic Platform For Understanding The Effect Of Structural Changes On Slow Magnetic Relaxation In Mononuclear Octahedral Copper(II) Complexes

09 December 2021, Version 2

Abstract

Current advances in molecular magnetism are aimed at the construction of molecular nanomagnets and spin qubits for their utilization as high-density data storage materials and quantum computers. Mononuclear coordination compounds with low spin values of S=½ are excellent candidates for this endeavour, but their construction via rational design is limited. This particularly applies to the single copper(II) spin center, having been only recently demonstrated to exhibit slow relaxation of magnetisation in the appropriate octahedral environment. We have thus prepared a novel, modular organic scaffold that would allow one to gain in-depth insight into how purposeful structural differences affect the slow magnetic relaxation in monometallic, transition metal complexes. As a proof-of-principle, we demonstrate how one can construct two, structurally very similar complexes with isolated Cu(II) ions in an octahedral ligand environment, the magnetic properties of which differ significantly. The differences in structural symmetry effects and in magnetic relaxation are corroborated with a series of experimental and theoretical techniques, showing how symmetry distortions and crystal packing affect the relaxation behaviour in these isolated Cu(II) systems. Our highly modular organic platform can be efficiently utilized for the construction of various transition-metal ion systems in the future, effectively providing a model system for investigation of magnetic relaxation via targeted structural distortions.

Keywords

Copper(II)
Single Ion Magnets
Slow magnetic relaxation
Coordination compounds
EPR
Magneto-structural correlations
Ligands

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Experimental synthetic and crystallographic details, part of magnetic, spectroscopic and theoretical data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.