Abstract
Over the last few decades enhanced sampling methods have made great strides. Here, we exploit this progress and propose a modular workflow for blind reaction discovery and characterization of reaction paths. Central to our strategy is the use of the recently developed explore variant of the on-the-fly probability enhanced sampling method. Like metadynamics, this method is based on the identification of appropriate collective variables.
Our first step is the discovery of new chemical reactions and it is performed biasing a one dimensional collective variable derived from spectral graph theory. Once new reaction pathways are detected, we construct ad-hoc tailored neural-network based collective variables to improve sampling of specific reactions and finally we refine the results using free energy perturbation theory. Our workflow has been successfully applied to both intramolecular and intermolecular reactions. Without any chemical hypothesis, we discovered several possible products, computed the free energy surface at semiempirical level, and finally refined it with a more accurate Hamiltonian. Our workflow requires minimal user input, and thanks to its modularity and flexibility, can extend the scope of ab initio molecular dynamics for the exploration and characterization of reaction space.
Supplementary materials
Title
Supporting Information
Description
Computational details about the simulations;
free energy surface at low and high level of theory for the aldol reaction.
Actions