On the Mechanistic Origins of the pH-Dependency in Au-Catalyzed Glycerol Electro-Oxidation: Insight from First Principles Calculations

09 December 2021, Version 5
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrocatalytic oxidation of glycerol (EOG) is an attractive approach to convert surplus glycerol to value-added products. Experiments have shown that EOG activity and selectivity depend on the electrocatalyst, but also on the electrode potential, the pH, and the electrolyte. For broadly employed gold (Au) electrocatalysts, experiments have demonstrated high EOG activity under alkaline conditions with glyceric acid as a primary product, whereas under acidic and neutral conditions Au is almost inactive producing only small amounts of dihydroxyacetone. In the present computational work, we have performed an extensive mechanistic study to understand the pH- and potential- dependency of Au-catalyzed EOG. Our results show that activity and selectivity are controlled by the presence of surface-bound hydroxyl groups. Under alkaline conditions and close to the experimental onset potential, modest OH coverage is preferred accord- ing to our constant potential calculations. This indicates that both Au(OH)ads and Au can be active sites and they cooperatively facilitate the thermodynamically and kinetically feasible formation of glyceric acid thus explaining the experimentally observed high activity and selectivity. Under acidic conditions, hydroxide coverage is negligi- ble and the dihydroxyacetone emerges as the favored product. Calculations predict slow reaction kinetics, however, which explains the low activity and selectivity towards dihydroxyacetone reported in experiments. Overall, our findings highlight that com- putational studies should explicitly account for pH and coverage effects under alkaline conditions for electrocatalytic oxidation reactions to reliably predict electrocatalytic behaviour.

Keywords

density functional theory
alkaline
electrocatalytic oxidation
Reaction mechanism
anion

Supplementary materials

Title
Description
Actions
Title
Supplementary material for On the mechanistic origins of the pH-dependency in Au-catalyzed glycerol electro-oxidation: insight from first principles calculations
Description
The supplementary material
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.