Alkali metal cations can inhibit non-covalent catalysis

09 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The study concerns the effect of inorganic salts on supramolecular catalysis. The model reaction is the acid hydrolysis of the ammonium phenyl acetate derivative promoted by cucurbit[7]uril macrocycle. When salt is absent, the macrocycle is insensitive to the ionic strength of the solution, and the reaction rate linearly depends on the concentration of hydronium ions (H3O+). After the addition of inorganic salts, in particular, Na+ and K+ ions, the catalytic effect of the macrocycle is suppressed. The kinetic and binding data collected by us evidence the formation of the ternary complexes between the cations, macrocycle, and substrate, which are less prone to H3O+ attack. This type of inhibition corresponds to a rare uncompetitive model in contrast to a more common competitive one that relies on the displacement of the substrate. This study shows that special care must be taken when studying catalysis in solutions that contain metal cations, such as regular water and inorganic buffers.

Keywords

cucurbituril
acid hydrolysis
phenyl acetate
sodium
potassium
salt effect
ternary complex
supramolecular catalysis
uncompetitive inhibition.

Supplementary materials

Title
Description
Actions
Title
Alkali metal cations can inhibit non-covalent catalysis
Description
Synthetic procedures, characterization, binding and kinetic studies.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.