Validating Experiment for the Reaction H2 + NH2- by Dynamical Computations on an Accurate Full-Dimensional Potential Energy Surface

08 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ion-neutral molecular reactions play key roles in the field of ion related chemistry. As a prototypical multi-channel ion-molecular reaction, the reaction H2 + NH2- → NH3 + H- has been studied for decades. In this work, we develop a globally accurate potential energy surface (PES) for the title system H2 + NH2- based on nearly hundreds of thousands points over a wide dynamically relevant region. The permutational invariants polynomials neural network (PIP-NN) method is used for fitting and the total root mean squared error (RMSE) is extremely small, only 0.026 kcal mol-1. Extensive dynamical and rate coefficient calculations are carried out on this new PIP-NN PES by the quasi-classical trajectory (QCT) method. The calculated rate coefficients for H2 / D2 + NH2- agree well with the experimental results that show a inverse temperature dependence from 50 to 300 K, consistent with the capture nature of this barrierless reaction. A significant kinetic isotope effect has been well reproduced by the QCT computations. In addition, we report a unique phenomenon of significant reactivity suppression by exciting the rotational mode of H2, particular at low collision energies. Further analysis shows that the excitation of rotational mode of H2 would prevent the formation of the reactant complex and thus suppress reactivity.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.