Phosphinate MOF formed from tetratopic ligands as proton conductive materials

08 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Metal organic frameworks (MOFs) are attracting attention as potential proton conductors. There are two main advantages of MOFs in this application: the possibility of rational design and tuning of the properties, and clear conduction pathways given by their crystalline structure. We hereby present two new MOF structures, ICR-10 and ICR-11, based on tetratopic phosphinate ligands. The structures of both MOFs were determined by 3D electron diffraction. They both crystallize in the P-3 space group and contain arrays of parallel linear pores lined with hydrophilic non-coordinated phosphinate groups. This, together with the adsorbed water molecules, facilitates proton transfer via the Grotthuss mechanism, leading to the proton conductivity up to 4.26∙10-4 S cm-1 for ICR-11.


Metal-organic framework
Phosphinic acid
Proton conductivity
Porous coordination polymer

Supplementary materials

Phosphinate MOF formed from tetratopic ligands as proton conductive materials – Supporting information
Experimental data, graphs and supplementary figures.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.