Na-β-Al2O3 stabilized Fe2O3 oxygen carriers for chemical looping water splitting: correlating structure with redox stability

08 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemical looping is an emerging technology to produce high purity hydrogen from fossil fuels or biomass with the simultaneous capture of the CO2 produced at the distributed scale. This process requires the availability of stable Fe2O3-based oxygen carriers. Fe2O3-Al2O3 based oxygen carriers exhibit a decay in the H2 yield with cycle number due to the formation of FeAl2O4 that cannot be re-oxidized. In this study, the addition of sodium (via a sodium salt) in the synthesis of Fe2O3-Al2O3 oxygen carriers was assessed as a means to counteract the cyclic deactivation of the oxygen carrier. Detailed insight into the oxygen carrier’s structure was gained by combined X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) at the Al, Na and Fe K-edges and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) analyses. The addition of sodium prevented the formation of FeAl2O4 and stabilized the oxygen carrier via the formation of a layered structure, Na-β-Al2O3 phase. The resulting material, Na-β-Al2O3 stabilized Fe2O3, showed a very high H2 yield of ca. 13.3 mmol/g during 15 cycles.

Keywords

water splitting
oxygen carrier
chemical looping
X-ray absorption spectroscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.