Variation between Antiferromagnetism and Ferrimagnetism in NiPS3 by Electron Doping

07 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

How to electrically control magnetic properties of a magnetic material is promising towards spintronic applications, where the investigation of carrier doping effects on antiferromagnetic (AFM) materials remains challenging due to their zero net magnetization. In this work, we found electron doping dependent variation of magnetic orders of a two-dimensional (2D) AFM insulator NiPS3, where doping concentration is tuned by intercalating various organic cations into the van der Waals gaps of NiPS3 without introduction of defects and impurity phases. The doped NiPS3 shows an AFM-ferrimagnetic (FIM) transition at doping level of 0.2-0.5 electrons/cell and a FIM-AFM transition at doping level of ≥0.6 electrons/cell. We propose that the found phenomenon is due to competition between Stoner exchange dominated inter-chain ferromagnetic order and super-exchange dominated inter-chain AFM order at different doping level. Our studies provide a viable way to exploit correlation between electronic structures and magnetic properties of 2D magnetic materials for realization of magnetoelectric effect.

Supplementary materials

Title
Description
Actions
Title
Variation between Antiferromagnetism and Ferrimagnetism in NiPS3 by Electron Doping
Description
There is a more detailed supplement to the data in the main text
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.