OH binding energy as a universal descriptor of the potential of zero charge on transition metal surfaces

07 December 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The potential of zero charge (U_PZC) is an important quantity of metal-water interfaces that are central in many electrochemical applications. In this work, we use ab initio molecular dynamics (AIMD) simulations to study a large number of (111), (100), (0001) and (211) and overlayers of transition metal-water interfaces in order to identify simple descriptors to predict their U_PZC. We find a good correlation between water coverage and the work function reduction Δφ which is defined by the difference of the work function in vacuum and in the presence of water. Furthermore, we determine the vacuum binding energies of H2O and *OH species as good descriptors for the prediction of water coverage and thereby of ∆φ. Our insights unify different facet geometries and mixed metal surfaces and thereby generalize recent observations. We further present a scheme to predict U_PZC based only on the *OH binding and the vacuum work function estimated from static DFT calculations. This formalism is applicable to all investigated metals and mixed metal surfaces including terrace and step geometries and does not require expensive AIMD simulations. To evaluate physical influences to U_PZC, we decompose ∆φ into its orientational (∆φ_orient) and electronic(∆φ_el) components. We find ∆φ_orient to be a facet dependent property and a major contributor to ∆φ on (211) surfaces, while ∆φ_sub strongly depends on the metal identity.

Keywords

Potential of zero charge
Work function
Ab initio molecular dynamics
Density functional theory
Transition metal surfaces

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental values for work function and potential of zero charge; computed values for vacuum work function, water work function (AIMD and implicit solvent), orientational and electronic components of work function reduction, water coverage, and OH and water binding energy.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.