Redox-addressable single-molecule junctions incorporating a persistent organic radical

06 December 2021, Version 1

Abstract

The integration of radical (open-shell) species into single-molecule junctions at non-cryogenic temperatures is a key to unlocking the potential of molecular electronics in further applications. While many efforts have been devoted to this issue, in the absence of a chemical or electrochemical potential the open-shell character is lost when in contact with the metallic electrodes. Here, the organic 6-oxo-verdazyl radical, which is stable at ambient temperatures and atmosphere, has been functionalised by aurophilic 4-thioanisole groups at the 1,5-positions and fabricated into a molecular junction using the scanning tunnelling microscope break-junction technique. The verdazyl moiety retains open-shell character within the junction even at room temperature, and electrochemical gating permits in-situ reduction of the verdazyl to the closed-shell anionic state in a single-molecule transistor configuration. In addition, the bias-dependent alignment of the open-shell resonances with respect to the electrode Fermi levels gives rise to purely electronically-driven rectifying behaviour. The demonstration of a verdazyl-based molecular junction capable of integrating radical character, transistor-like switching behaviour, and rectification in a single molecular component under ambient conditions paves the way for further studies of the electronic, magnetic, and thermoelectric properties of open-shell species.

Keywords

molecular electronics
single-molecule junctions
organic radicals
persistent radicals

Supplementary materials

Title
Description
Actions
Title
Supplementary Info
Description
Methods, Additional Data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.