Abstract
The vapor deposition of many molybdenum-containing films relies on the delivery of volatile compounds with the general bis(tert-butylimido)molybdenum(VI) framework, both in atomic layer deposition and chemical vapor deposition. We have prepared a series of (tBuN)2MoCl2 adducts using neutral N,N’-chelates and investigated their volatility, thermal stability, and decomposition pathways. Volatility has been determined by thermogravimetric analysis, with the 1,4-di-tert-butyl-1,3-diazabutadiene adduct (5) found to be the most volatile (1 Torr of vapor pressure at 135 ºC). Thermal stability was measured primarily using differential scanning calorimetry, and the 1,10-phenanthroline adduct (4) was found to be the most stable, with an onset of decomposition of 303 ºC. We have also investigated molybdenum compounds with other alkyl-substituted imido groups: these compounds all follow a similar decomposition pathway, γ-H activation, with varying reaction barriers. The tert-pentyl, 1-adamantyl, and a cyclic imido (from 2,5-dimethylhexane-2,5-diamine) were systematically studied to probe the kinetics of this pathway. All of these compounds have been fully characterized, including via single-crystal X-ray diffraction, and a total of 19 unique structures are reported.
Supplementary materials
Title
Supporting Information
Description
Synthesis of reagents, supplemental experiments, TGA plots, DSC curves, vapor pressure estimates, additional crystallographic details and images, NMR and IR spectra.
Actions