Abstract
Most of chemistry in nanoporous materials with small pore sizes and windows is known to occur on the surface which is in immediate contact with substrate/solvent, rather than inside pores and channels. Here, we report the results of our comprehensive atomistic molecular dynamics simulations on deciphering the intermolecular hydrogen bond network of water on outer surface of a nanoparticle model of ZIF-8 vs. inner surfaces of its pristine crystalline bulk model. Using a finite ~5.1 nm nanoparticle model with edges containing under--coordinated Zn2+ metal sites we show that water exposed to the surface of the nanoparticle exhibits both interfacial and bulk-like characters. Furthermore, we illustrate that as water content increases larger droplets are formed with water molecules starting to diffuse into the nanopores. While the confined water in the crystalline bulk simulations is pushed to the vacant pores due to hydrophobic inner surfaces, the outer surface water molecules form chemical bonds with under--coordinated Zn2+ metal sites which act as nucleation sites for the water droplets to form and hence making the surface hydrophilic.
By adapting a similar mechanism to the dangling linker defect formation mechanism, we probe the tendency of the outer surface of ZIF-8 nanoparticles to water attack and hydrolysis. Results presented in this work are useful in designing more robust materials for applications in humid environments.