Abstract
The photochemistry of benzene is complex and non-selective because numerous mechanistic pathways are accessible in the ground- and excited-states. Fluorination is a known strategy to increase the chemoselectivities for Dewar-benzenes via 4π-disrotatory electrocyclization. However, the origin of the chemo- and regioselectivities of fluorobenzenes remains unexplained because of experimental limitations in resolving the excited-state structures on ultrafast timescales. The computational cost of multiconfigurational nonadiabatic molecular dynamics simulations is also generally prohibitive. We now provide high-fidelity structural information and reaction outcome predictions with machine-learning-accelerated photodynamics simulations of a series of fluorobenzenes, C6F6-nHn, n=0–3 to study their S1→S0 decay in 4 ns. We trained neural networks with XMS-CASPT2(6,7)/aug-cc-pVDZ calculations, which reproduced the S1 absorption features with mean absolute errors of 0.04 eV (< 2 nm). The predicted S1 excited-state lifetimes for C6F4H2, C6F6, C6F5H, and C6F3H3 are 64, 40, 18, and 8 ps, respectively. The trend is in excellent agreement with the experimental lifetimes. Our calculations show that the pseudo Jahn-Teller distortions create the S1 minimum region that prolongs the excited-state lifetime of fluorobenzenes. The pseudo Jahn-Teller distortions reduce when fluorination decreases. Characterization of the surface hopping structures suggests that the S1 relaxation first involves a cis-trans isomerization of a 𝜋C-C-bond in the benzene ring, promoted by the pseudo-Jahn-Teller distortions. A branching plane analysis revealed that the conical intersections favoring 4π-electrocyclization are less energetically accessible through the S1 relaxation; lower-energy conical intersections resemble the reactant and favor reversion.
Supplementary materials
Title
Excited-state distortions control the reactivities and regioselectivities of photochemical 4π-electrocyclizations of fluorobenzenes
Description
NN and XMS-CASPT2 information
Actions